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Abstract Copy number variants (CNVs) of the Williams–
Beuren syndrome (WBS) 7q11.23 region are responsible
for neurodevelopmental disorders with multi-system
involvement and variable expressivity. Typical features of
WBS microdeletion comprise a recognizable pattern of
facial dysmorphisms, supravalvular aortic stenosis, connec-
tive tissue abnormalities, hypercalcemia, and a distinctive
neurobehavioral phenotype. Conversely, the phenotype of
patients carrying the 7q11.23 reciprocal duplications
includes less distinctive facial dysmorphisms and promi-
nent speech delay. The common deletion/duplication
ranges in size from 1.5 to 1.8 Mb and encompasses approxi-
mately 28 genes. This region is Xanked by low copy repeats
(LCRs) with greater than »97% identity, which can medi-
ate non-allelic homologous recombination resulting from
misalignment of LCRs during meiosis. A clear genotype–
phenotype correlation has been established in WBS only
for the elastin gene, which is responsible for the vascular
and connective tissue abnormalities. The molecular sub-
strates underlying the other clinical features of 7q11.23

CNVs, including the neurocognitive phenotypes, are still
debated. Recent studies suggest that besides the role of the
genes in the deleted/duplicated interval, multiple factors
such as regulatory sequences, epigenetic mechanisms,
parental origin of the CNV, and nucleotide variations in the
non-deleted/duplicated allele may be important in deter-
mining the variable expressivity of 7q11.23 CNV pheno-
types. Here, we review the clinical and molecular Wndings
and the recent insights on genomic disorders associated
with CNVs involving the 7q11.23 region.

Introduction

Duplications and deletions, collectively known as copy
number variants (CNVs), are the most prevalent types of
structural variations in the human genome (Iafrate et al.
2004; Redon et al. 2006; Sebat et al. 2004). Analysis of the
reference sequence shows that »5% of the human genome
contains CNVs (Bailey et al. 2002; McCarroll et al. 2008).
While aVecting functions such as inXammatory response,
immunity, and cell proliferation may play a key role in
human genome evolution, genomic duplications and dele-
tions are also an important cause of human diseases (Lupski
1998) and disease susceptibility (Stankiewicz and Lupski
2002; Wain et al. 2009). Several studies found that CNVs
make a substantial contribution to the genetic mechanisms
underlying human diseases and provide greater insight into
the etiology of phenotypes that result from complex genetic
patterns of inheritance such as neurodevelopmental dis-
eases, autism spectrum disorders, bipolar disorders, and
schizophrenia (Beckmann et al. 2007). CNVs result in the
alteration of a variable number of genes causing changes in
gene dosages, which ultimately may lead to disease predis-
position or speciWc clinical phenotypes. Moreover, as
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emerged more recently, the disruption of regulatory regions
within the CNVs can also result into altered dosage and
function of genes outside the deleted or duplicated intervals
(Henrichsen et al. 2009a; Henrichsen et al. 2009b; Merla
et al. 2006).

Chromosomal rearrangements below the limit of detec-
tion of conventional karyotyping contribute signiWcantly to
the cause of mental retardation and congenital malforma-
tions (Zhang et al. 2009). Interstitial deletions of 7q11.23
cause Williams–Beuren syndrome (WBS; OMIM 194050),
one of the best characterized genomic disorders aVecting 1/
7,500–1/10,000 live births (Stromme et al. 2002). As with
many other genomic disorders, the common recurrent 1.55-
Mb microdeletion occurs by non-allelic homologous
recombination (NAHR) (Stankiewicz and Lupski 2002)
between LCRs (Urban et al. 1996) Xanking the deleted
region (Bayes et al. 2003; Hillier et al. 2003) (Fig. 1).
Because NAHR can generate both microdeletions and
microduplications, it was suspected that reciprocal micro-
duplication of microdeletion syndromes should also occur
(Lupski 1998). With the advent of diagnostic array compar-
ative genomic hybridization (aCGH), this prediction was

veriWed with the identiWcation of patients with 7q11.23
duplications (OMIM 609757).

Given the frequency of patients with de novo microdele-
tions of the WBS critical region, it is surprising that micro-
duplication of WBS region was Wrst reported only recently
(Somerville et al. 2005). This is likely due to a convergence
of factors. First, the phenotypes seen in patients with
7q11.23 microduplications are quite unlike those seen with
the common WBS microdeletion, and Xuorescent in situ
hybridization (FISH) analysis of metaphase cells is unlikely
to clearly detect the microduplication (ShaVer et al. 1997).
Clinicians were unlikely to order interphase FISH for WBS
in patients who were not clinically suspected to have WBS.
In fact, the Wrst patient reported to harbor a microduplica-
tion of chromosome 7q11.23 was initially evaluated for
velocardiofacial syndrome (VCFS) by real-time quantita-
tive PCR (qPCR) that instead fortuitously revealed duplica-
tion of markers within the WBS region (Somerville et al.
2005). Second, although the recombination reciprocal of
the WBS microdeletion was postulated to occur (Lupski
1998), it would have been diYcult to predict the phenotype
associated with the microduplication based on what was

Fig. 1 Schematic representation of 7q11.23 genomic rearrangements
(not drawn to scale). The centromeric (c), middle (m), and telomeric (t)
LCRs are shown as colored arrows with their relative orientation to
each other. Please note that multicopy genes within the blocks are
represented only once. In the middle, the common deletions of 1.5 and
1.8 Mb are depicted; breakpoints within the centromeric and the

medial copy of LCR block B and within the centromeric and the medial
copy of LCR block A are shown. Schematic representation of the
7q11.23 deletion, duplication, triplication, and inversion are shown. In
the triplication case, the location of the breakpoints is shown with
black dots representing the blocks Am, Bt and the region between
FZD9 and BAZ1B genes, respectively
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known about the contributions of genes in this region to the
WBS phenotype.

7q11.23 deletion syndrome: clinical Wndings

The Wrst pictures of patients with WBS were likely reported
in 1956 by Dr. Schlesinger in a paper describing the associ-
ation of unusual facies and infantile hypercalcemia (Schle-
singer et al. 1956). Dr. Williams was the Wrst to recognize
WBS as a distinct clinical entity in 1961 (Williams et al.
1961) and shortly thereafter, Dr. Beuren reported four more
WBS patients (Beuren et al. 1962). Since then the WBS
phenotype has been extensively studied and aVected indi-
viduals typically have a distinctive facies, cardiovascular
abnormalities, connective tissue anomalies, infantile hyper-
calcemia, and a characteristic neurocognitive and behav-
ioral phenotype (Pober 2010).

Facial characteristics

The distinctive WBS facial Wndings include broad fore-
head, periorbital fullness, epicanthal folds, Xat nasal bridge,
a short upturned nose, long philtrum, and wide mouth with
full lips, full cheeks, and small jaw. In blue- and green-eyed
individuals, a stellate or lacy pattern of the irides is usually
present (Greenberg and Lewis 1988). Patients with WBS
also exhibit malocclusion, hypoplastic enamel, a high preva-
lence of dental caries, small and slender roots, pulp stones,
excessive interdental spacing, oligodontia, microdontia,
and aberrant tooth shape (Axelsson et al. 2003; Pober
2010).

Growth and endocrine problems

Irritability which could be related to central nervous system
immaturity, to pain from esophagitis, or to hypercalcemia is
common in WBS infants along with feeding diYculties and
vomiting due to gastroesophageal reXux, and failure to
thrive. By the end of the Wrst year, the irritability and
vomiting usually diminish or resolve. Even though there is
improvement of growth in mid-childhood, the linear growth
of most WBS patients is reduced compared to siblings or
healthy, age-matched controls (Partsch et al. 1999). Puberty
typically occurs early and is associated with abbreviated
pubertal growth spurt in both genders (Pankau et al. 1992;
Partsch et al. 1999). Central precocious puberty has been
reported in about 15% of WBS girls (Amenta et al. 2005;
Ferrero et al. 2007; Partsch et al. 2002). Growth should be
carefully monitored as failure to thrive may result from
hypothyroidism or celiac disease, which have both
increased prevalence in WBS. Therefore, systematic
screening for these conditions and the use of disease-

speciWc growth charts is recommended (Giannotti et al.
2001; Hill et al. 2005; Pittschieler et al. 1993; Partsch et al.
1999; Santer et al. 1996).

Although it was recognized early as a feature of WBS
(Black and Carter 1963), transient hypercalcemia is docu-
mented only in a minority (6–15%) of patients (American
Academy of Pediatrics Committee on Genetics 2001;
Amenta et al. 2005; Ferrero et al. 2007).

A prevalence of 2–40% of hypothyroidism, which is
more frequently subclinical, has been described (American
Academy of Pediatrics Committee on Genetics 2001;
Amenta et al. 2005; Cambiaso et al. 2007; Cherniske et al.
2004; Ferrero et al. 2007; Stagi et al. 2005). Reduced vol-
ume and morphological abnormalities of the thyroid gland
such as hypoplasia, hemiagenesis, and ectopia have been
reported (Cambiaso et al. 2007; Stagi et al. 2005). Another
common endocrine abnormality, especially in WBS adults, is
diabetes mellitus or impaired glucose tolerance (Cherniske
et al. 2004).

Cardiovascular abnormalities and connective tissue 
involvement

The connective tissue abnormalities include a hoarse/deep
voice, hernias, bladder/bowel diverticulae, soft/lax skin,
joint laxity or limitation, and cardiovascular anomalies. The
spectrum, natural history, and pathological Wndings of car-
diovascular and connective tissue lesions in WBS patients
are similar to those seen in patients with elastin (ELN) gene
mutations (Metcalfe et al. 2000). Although with a wide
range of prevalence reXecting age-dependent onset of
symptoms, variable study methods, and diVerent methods
of ascertainment, cardiovascular defects are present in high
proportion of WBS cases (»50–80%) and account for most
of WBS morbidity and mortality. The most common anom-
alies are supravalvular aortic stenosis (SVAS), pulmonary
artery stenosis, and coarctation or aortic arch hypoplasia
(Amenta et al. 2005; Del Pasqua et al. 2009; Eronen et al.
2002; Ferrero et al. 2007). SigniWcant and symptomatic
obstruction may develop in any artery in WBS individuals
and lifelong monitoring of the cardiovascular system is rec-
ommended (Ino et al. 1988; Wren et al. 1990). For instance,
artery stenoses have resulted in myocardium infarction,
stroke, and sudden death (Bird et al. 1996; Wessel et al.
2004). Although not frequently detected by routine imaging
studies, renal artery stenosis or diVuse aortic narrowing
resulting in hypertension may be present in WBS individu-
als (Bouchireb et al. 2010; Pankau et al. 1996; Rose et al.
2001). Structural intra-cardiac malformations such as ven-
tricular septal defects (Del Pasqua et al. 2009; Jones and
Smith 1975), tetralogy of Fallot (Del Pasqua et al. 2009;
Pernot et al. 1984), and atrioventricular canal have also
been reported (Eronen et al. 2002; Nakamoto et al. 2003),
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but they are very uncommon and are found in <5% of
patients.

Other frequent connective tissue abnormalities are
gastrointestinal, urogenital, skin, and musculoskeletal
problems. Besides the feeding problems and the gastro-
esophageal reXux occurring in infancy, gastrointestinal
problems in WBS include colon diverticulosis, inguinal and
umbilical hernias, rectal prolapse, constipation, and chronic
abdominal pain (Partsch et al. 2005). These Wndings, along
with anxiety and other psychiatric disorders (such as
depression, obsessive–compulsive symptoms, and phobias)
and hypertension, are common among elderly (>30-year-old)
WBS patients (Cherniske et al. 2004).

Urinary tract abnormalities include renal structural
defects and bladder diverticulae (Amenta et al. 2005;
Pankau et al. 1996; Pober et al. 1993; Sforzini et al. 2002).
In addition, WBS patients are at risk of developing nephro-
calcinosis secondary to the hypercalcemia. Musculoskeletal
problems may include joint involvement, radioulnar synos-
tosis, kyphosis, lordosis, and scoliosis (Morris and Carey
1990; Pankau et al. 1993). Hyperextensibility of the joints
is common in young children, while joint contractures are
more common in older individuals (Kaplan et al. 1989;
Morris et al. 1990). The joint and postural abnormalities in
combination with the cerebellar dysfunction often lead to a
stiV, awkward gait, especially in adults (Morris et al. 1990).
The skin is very soft with Wne creases, and premature sag-
ging and prematurely gray hairs are common Wndings in
early adulthood.

There are few reports on bone mass status in WBS.
Osteopenia or osteoporosis in at least one site has been
reported in a small cohort of WBS adults investigated by
dual energy X-ray absorptiometry (Cherniske et al. 2004).
However, it is unclear whether reduced bone mass in
WBS is secondary to abnormalities of calcium metabo-
lism, gastrointestinal problems (i.e. celiac disease), or
simply a consequence of decreased physical activity,
which is commonly observed in adults with mental
disabilities.

Neurological problems

Neurological problems include coordination diYculties (for
example, trouble walking down a staircase), hyperreXexia,
cerebellar dysfunction such as ataxia and dysmetria (Chap-
man et al. 1996; Cherniske et al. 2004), strabismus (esotro-
pia) (Kapp et al. 1995; Winter et al. 1996), nystagmus,
hypersensitivity to sound, and sensorineural hearing loss
(Marler et al. 2005). The hypotonia noted in young children
typically improves in childhood (Chapman et al. 1996).
Seizures are relatively rare aVecting <10% of individuals
with WBS (Amenta et al. 2005), and there are few reports
of children with infantile spasms and hypsarrhythmia, usu-

ally associated with larger 7q11.23-q21.2 deletions involv-
ing the MAGI2 gene (Mizugishi et al. 1998; Morimoto et al.
2003; Trauner et al. 1989; Tsao and Westman 1997).

Brain malformations are relatively infrequent and are not
consistent in the WBS population. Type I Chiari malforma-
tion (Ferrero et al. 2007; Mercuri et al. 1997; Pober and
Filiano 1995) and corpus callosum shape changes (Schmitt
et al. 2001; Tomaiuolo et al. 2002) are the recurrent reported
defects. Using brain magnetic resonance imaging (MRI),
reduction of the overall brain size and of the fronto-parietal
brain region, which is known to be involved in the visual
guidance of the movement, have been reported (Eckert
et al. 2005; Jernigan and Bellugi 1990; Jernigan et al. 1993;
Wang et al. 1992).

Cognitive and behavioral proWles

The WBS individuals have a unique cognitive and person-
ality proWle with areas of relative strength and weakness
(Francke 1999; Morris et al. 1988). The cognitive proWle
generally consists of mild–moderate mental retardation
with intelligence quotients (IQs) in the high 50s to low 70s.
However, IQ scores alone do not convey the distinctive
proWle of cognitive skills of WBS individuals, which is
characterized by a severe visuospatial construction deWcit
contrasting with a relative strength in verbal short-term
memory and language. Early reports drew attention to the
“cocktail party” pattern of speech emphasizing strong ver-
bal abilities but lack of depth in understanding. This aspect
of the syndrome has been often exaggerated by secondary
sources, and the initial view that individuals with WBS had
normal language abilities despite mild–severe mental retar-
dation (Bellugi et al. 1990) was due to choice of Down syn-
drome as comparison group. These results were not
conWrmed when WBS verbal performances were evaluated
on standardized assessments of language which clearly
indicated that their language is below age expectations
(Mervis 2006).

Impairment in visuospatial construction is a hallmark of
the WBS neurocognitive proWle, and is characterized by
poor performance on tests of block design or pattern con-
struction (Mervis et al. 2000). WBS individuals may focus
on the particular, while failing to appreciate the global
aspects (Tassabehji 2003). Moreover, WBS individuals
exhibit impaired capacity to reorient in the environment
(Lakusta et al. 2010).

From a behavioral standpoint, striking features of indi-
viduals with WBS are their high sociability and empathy
for others, leading them to engage in social interaction even
with strangers (Klein-Tasman and Mervis 2003; Mervis
and Klein-Tasman 2000). They also appear to have
impaired detection of social threat (Santos et al. 2010).
Although the excessive drive to socialize is an hallmark of
123
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WBS, and individuals with WBS appear to be particularly
drawn to faces (Gagliardi et al. 2003b; Wang et al. 1995),
their socialization is often “shallow” with conversations
focusing on their own interests rather than engaging in a
more typical give-and-take exchange (Einfeld et al. 1997).
Intriguingly, their remarkable hypersociability is associated
with general and anticipatory anxieties, phobia related to
non-social objects, and depression (Dykens 2003; Klein-
Tasman and Mervis 2003; Leyfer et al. 2006; Stinton et al.
2010).

Even though autism or autism spectrum disorders have
been described in association with WBS only in a small
number of patients (Gillberg and Rasmussen 1994; Hergu-
ner and Mukaddes 2006; Levitin et al. 2005; Leyfer et al.
2006), the occurrence of these disorders may not be coinci-
dental. Attention deWcit hyperactivity disorder (ADHD),
predominantly inattentive type or combined type, is partic-
ularly common (>50%) in children and adolescents with
WBS (Leyfer et al. 2006). Many children with WBS have
diYculties in initiating and maintaining sleep, which could
exacerbate ADHD symptoms (Einfeld et al. 1997; Sarimski
1996).

Individuals with WBS demonstrate hypersensitivity to
high frequency sounds (Levitin 2005), strong attraction to
sounds and music (Levitin et al. 2004), use of vocal

prosody and a relative strength in auditory rote memory
(Udwin and Yule 1991; Wang and Jernigan 1994).

7q11.23 duplication syndrome: clinical Wndings

The phenotype of reciprocal WBS duplications has emerged
only recently, and the full clinical spectrum likely still needs
to be delineated. Nevertheless, it is clear that the presentation
of 7q11.23 duplications is milder and facial features are
diVerent and less distinctive than those of WBS (Table 1).
This situation is mirrored in other genomic disorders where
milder pathological consequences tend to arise with gene
duplications compared with the reciprocal deletions, as
shown by duplications versus deletions of 22q11.2 (Ens-
enauer et al. 2003) and duplications versus deletions of
1q21.1 (Brunetti-Pierri et al. 2008). Given the less distinctive
features of reciprocal WBS duplications, it is likely that this
syndrome remains often undiagnosed. The most intriguing
and distinctive feature of 7q11.23 duplications is the speech
involvement further suggesting that speciWc gene(s) in the
region are sensitive to dosage changes and can aVect human
speech and language. Recently, the identiWcation of the Wrst
case of triplication of the WBS region in a patient with severe
speech delay further supports this hypothesis (Beunders et al.

Table 1 Comparison of clinical features of 7q11.23 CNVs

a Few patients with growth retardation have been reported
b Transmitting parents with normal cognition have been reported
c Poor visuospatial skills reported in two patients with 7q11.23 duplication (Depienne et al. 2007; Torniero et al. 2007)

Finding 7q11.23 deletion 7q11.23 duplication

Facial characteristics Broad forehead Broad forehead

Low nasal root High, broad nose

Long philtrum Short philtrum

Full lips Thin lips

Growth and endocrine problems Growth retardation Normal growtha

Hypercalcemia Normocalcemia

Cardiovascular abnormalities SVAS Congenital heart defects

Hypertension

Connective tissue abnormalities Joint laxity Joint laxity

Neurological problems Hypotonia Hypotonia

Seizures

Brain MRI abnormalities (non-speciWc) Brain MRI abnormalities (non-speciWc)

Cognitive abnormalities Developmental delay Developmental delay

Mental retardation Mental retardationb

Relative strength in expressive language Speech and language delay

DeWcit of visuospatial skills Visuospatial skills sparedc

Behavioral problems Excessively social DeWcits of social interaction/aggressive behavior

Autism spectrum behaviors Autism spectrum behaviors

ADHD ADHD
123
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2010). Another striking Wnding of 7q11.23 duplications is the
increased prevalence of autism, which has also been noted in
other duplication syndromes (Brunetti-Pierri et al. 2008;
Glessner et al. 2009; Potocki et al. 2007).

Facial characteristics

All reported patients have dysmorphic features, although
these Wndings are mild and non-speciWc. Therefore, a dis-
tinctive facial pattern has been diYcult to recognize (Van
der Aa et al. 2009). Recurrent dysmorphic craniofacial fea-
tures include a broad forehead, high broad nose, neatly
placed straight eyebrows, and a thin upper lip.

Growth and endocrine problems

Growth appears to be normal in the majority of the cases,
and only few cases with short stature have been reported
(Merritt and Lindor 2008; Somerville et al. 2005; Van der
Aa et al. 2009). The head circumference varies between
50th and 97th centile in most patients with overt macro-
cephaly in few cases (Berg et al. 2007; Torniero et al. 2007;
Van der Aa et al. 2009).

Cardiovascular abnormalities and connective tissue 
involvement

Cardiovascular abnormalities are not frequently reported in
patients with WBS region duplication (Berg et al. 2007;
Depienne et al. 2007; KirchhoV et al. 2007; Merritt and
Lindor 2008; Torniero et al. 2007). The reported abnormalities
are atrial and ventricular septum defects (Kriek et al. 2006;
Van der Aa et al. 2009), subvalvular pulmonal stenosis
(Kriek et al. 2006), SVAS (Orellana et al. 2008), and patent
ductus arteriosus (Van der Aa et al. 2009). Interestingly,
one patient with congenital heart defect carried a small
0.3–0.4 Mb microduplication encompassing a single gene,
FKBP6 (Kriek et al. 2006).

Although joint laxity is a non-speciWc Wnding, which
may be due to multiple causes, its presence in several
cases may suggest that increased elastin dosage could
play a role. Whether other connective tissue abnormalities
are also features of 7q11.23 duplications has not been
determined yet.

Other medical problems

Various congenital anomalies have been reported in one or
few cases, including hydrocephalus, congenital glaucoma,
strabismus, astigmatism, choanal atresia, clefting, facial
asymmetry, congenital diaphragmatic hernia, severe vesi-
coureteral reXux, cryptorchidism, cutis marmorata, and
neutropenia. It is unclear whether these abnormalities are

present coincidently or they are indeed part of the pheno-
type of 7q11.23 duplication syndrome.

Neurologic problems

Hypotonia and epilepsy are the most commonly reported
neurologic problems in the duplication of WBS region
(Van der Aa et al. 2009). Epilepsy has been reported in
»20% of duplication patients, and therefore, its prevalence
appears to be higher than WBS (Van der Aa et al. 2009).
Brain MRI has been frequently abnormal, but no consistent
brain abnormalities have been found (Torniero et al. 2007;
Van der Aa et al. 2009).

Cognitive and behavioral proWles

Most patients are developmentally delayed. However, for-
mal IQ-testing revealed normal intelligence in few patients
and in some transmitting parents (Van der Aa et al. 2009).
Language delay is seen in almost all patients, either expres-
sive or receptive language or both. The signiWcant language
impairment with sparing of visuospatial cognitive skills in
most patients with 7q11.23 duplication syndrome is in
direct contrast to the typical cognitive proWle of WBS
patients, in whom verbal skills are a relative strength and
visuospatial skills are severely impaired (Mervis and Klein-
Tasman 2000). Some of the transmitting parents showed
language delay (Torniero et al. 2008). Interestingly, some
of them had a history of motor and language delay or learn-
ing diYculties, which eventually resolved (Merritt and
Lindor 2008; Van der Aa et al. 2009). In adult life, these
parents are usually employed and functioning well, and in
one case neither speech nor cognitive impairment was evi-
denced (Berg et al. 2007). It remains to be determined
whether patients outgrow some of their cognitive problems
or whether the phenotype of these adult patients represents
the mild end of the phenotypic spectrum. Some children
with 7q11.23 duplication syndrome have developed non-
verbal gestures as a means of communicating and compen-
sating for their signiWcant speech delays although they
diVered in the degree to which they were Xuent in using
these signs and gestures (Berg et al. 2007). These features
share some similarity to developmental verbal dyspraxia
(OMIM 602081), a disorder of speech production and lan-
guage processing that has been associated with mutations in
the FOXP2 gene located on 7q31 (Lai et al. 2001).

DeWcits of social interaction have also been noted in
7q11.23 duplication patients. Formal diagnosis of autism or
autistic spectrum features such as poor eye contact, poor
social interaction, limited facial expressions, repetitive
behaviors, repetitive play, repetitive speech, sensory
integration problems, or withdrawal have been reported.
Additional problems such as ADHD, self-injury, anxiety,
123
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and aggression have also been described (Berg et al. 2007;
Depienne et al. 2007; Van der Aa et al. 2009).

Diagnosis and genetic counseling

Since 1993 when the genetic cause of WBS was discovered
(Ewart et al. 1993), the WBS is diagnosed by FISH on
metaphase chromosomes (Fig. 2a) using the elastin gene as
probe and/or microsatellite/single nucleotide polymor-
phism (SNP) genotyping. FISH remains the most widely
used method to conWrm the clinical diagnosis. However,
FISH is labor-intensive, time-consuming, and it does not
allow the detection of the exact size of the deletion,
whereas microsatellite/SNP genotyping depends on their
relative informativeness and availability of parental DNA
to ascertain the deletion. Thus, these techniques cannot be
informative for cases harboring atypical deletions, which
are helpful to dissect genotype–phenotype correlations (see
below). Moreover, although FISH can reliably detect geno-
mic deletions, the diYculty of obtaining accurate interphase
FISH interpretation for duplications (ShaVer et al. 1997)
makes interphase FISH highly problematic for the diagno-
sis of 7q11.23 duplication syndrome. Conversely, the DNA
dosage-based methods to detect small segmental aneuploi-
dies are robust, easy to interpret, and simple to set up. For
these reasons, techniques such as qPCR, multiplex ligation-
dependent probe ampliWcation (MLPA), and aCGH are rap-
idly emerging as conWrmatory or Wrst-line testing (Fig. 2b–d).

The qPCR allows estimation of the relative quantity of
an analyzed locus by designing multiple assays within and
outside the segmental aneuploidy. This method allows pre-
cise mapping of the size of deletion or duplication
(Fig. 2b). Furthermore, qPCR allows the processing of sev-
eral DNA samples within the same run (Howald et al. 2006;
Schubert and Laccone 2006).

The MLPA is also an eYcient and reliable assay for dosage
screening of multiple genomic loci in a single reaction and is
based on the use of synthetic probe sets containing sequences
derived from the genes within the deleted/duplicated region
(Hannes et al. 2009; Sellner and Taylor 2004) (Fig. 2c).

In addition, microarray-based CGH using either bacte-
rial artiWcial chromosomes (BACs) or oligonucleotides as
probes are very sensitive at detecting copy number altera-
tions of increasingly smaller regions (Edelmann et al. 2007)
(Fig. 2d).

In contrast to the rarity of parental transmission in the
WBS (Morris et al. 1993; Ounap et al. 1998; Pankau et al.
2001; Sadler et al. 1993), and again similar to other dupli-
cation syndromes (Brunetti-Pierri et al. 2008; Ou et al.
2008), there is a high frequency of parental transmission in
7q11.23 duplication patients. Clearly, an important consid-
eration in genetic counseling for the 7q11.23 duplication

syndrome is the potential for reduced penetrance and vari-
able expressivity, which has also been reported for well-
characterized syndromes, such as 22q11.2 microdeletion,
where phenotypically mild deletion carriers have escaped
clinical recognition until they had children with more
severe manifestation (Wilson et al. 1992). Findings such as
these and the recently described 16p13.11, 15q13.3, and
1q21.1 microdeletion syndromes (Brunetti-Pierri et al.
2008; Hannes et al. 2009; Sharp et al. 2008) raise diYcult
questions in the context of genetic counseling for newly
diagnosed cases and particularly for prenatal diagnosis.

Mechanisms of rearrangements at 7q11.23

As the molecular mechanisms causing the 7q11.23 rear-
rangements have been extensively described in some recent
reviews (Schubert 2009; Zhang et al. 2009), they will be
only brieXy presented herein.

Large and complex segmental duplications Xanking the
commonly deleted interval act as substrates for NAHR that
mediates duplications, deletions, and inversions (Lupski
2009). Human chromosome 7 contains several segmental
duplications, with an 8.2% overall content and a predominant
enrichment of intrachromosomal duplications (7% of the
sequence) (Antonell et al. 2005; Hillier et al. 2003). The
genomic architecture of the 7q11.23 region is complex with a
single-copy interval Xanked by three blocks (A, B, and C) of
>320 kb in size. The commonly deleted region results in mei-
otic NAHR involving LCRs (Bayes et al. 2003) (Fig. 1). The
three blocks are organized in complexes located on the cen-
tromeric (cen), medial (mid), and telomeric (tel) segment of
the WBS locus (Fig. 1). The medial and centromeric LCR
blocks have transcription direction in the opposite orientation
to the telomeric LCR complex (KarmiloV-Smith et al. 2003)
(Fig. 1). The single-copy gene region is located between the
blocks C-mid and B-mid and spans a region of »1.2 Mb.

A 1.5-Mb commonly deleted interval, which is present
in >95% of individuals with clinically diagnosed WBS, is
caused by an unequal meiotic recombination between
B-cen and B-mid; »3–5% of typical WBS patients display
a deletion of »1.8 Mb, between the A-cen and A-mid
(Fig. 1), and 2–3% of WBS patients carry atypical deletions
(Schubert 2009).

The higher sequence homology between blocks B-cen
and B-mid (99.6%) compared to the sequences of blocks
A-cen and A-mid (98.2%), and the shorter size of blocks
B-cen and B-mid compared to the size of block A-cen and
A-mid promote rearrangements involving predominantly
blocks B-cen and B-mid (Fig. 1).

The deletions in the WBS region arise as a consequence
of interchromosomal or interchromatid and intrachromatid
misalignment resulting in unequal crossing over between
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Fig. 2 a Methods to detect 7q11.23 copy number variants. Metaphase
FISH in a WBS patient. Normal non-deleted chromosome 7 has two
hybridization signals relative to ELN gene (red signals) and two green
signals corresponding to the control probes on the same chromosome.
The deleted chromosome 7 shows only the two hybridization green
signals corresponding to the control probe, indicating that ELN gene is
deleted. b Mapping WBS typical deletion and duplication by qPCR.
Relative DNA quantity of assays from the 7q11.23 region and control
region was quantiWed as previously reported (Ferrero et al. 2010;

Howald et al. 2006). Schematic representation of a classical WBS-
deleted patient (wbs-del, green triangles), and a patient carrying the
7q11.23 duplication (wbs-dup, blue squares) compared to a control
(CTRL, red squares). c MLPA analysis of deletion and duplication in
7q11.23 region. The graph on the left shows a deletion of the FKBP6,
FZD9, TBL2, STX1A, ELN, LIMK1, RFC2, and CYLN2/CLIP2 genes
on chromosome 7. The graph on the right shows the duplication of the
same region. d Results of array comparative genomic hybridization
(aCGH) showing a 1.5-Mb (top) and a 1.8-Mb loss in the WBS region
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the regions comprises between the LCR blocks (Schubert
2009). Haplotype analysis indicated that two-thirds of the
deletions arise from crossover events between chromosome
7 homologs during meiosis, while intrachromatid rear-
rangements occur in one-third of cases (Cusco et al. 2008).
Interchromosomal recombination appears to be the most
common mechanism responsible for the duplications
(Hannes et al. 2009). Interestingly, the molecular character-
ization of deletion junctions in some atypical patients
suggests that mechanisms other than NAHR, such as
non-homologous end joining or fork stalling and template
switching should be considered as responsible for some of
the rearrangements at 7q11.23 (Antonell et al. 2010; Lee
et al. 2007).

Using a sperm-based assay to measure the rate of de
novo reciprocal deletions and duplications, it has been
shown that 7q11.23 deletions are generated at a higher rate
than their reciprocal duplications (Turner et al. 2008). This
may occur because intrachromatid NAHR generates only
deleted gametes (Turner et al. 2008). However, the ultimate
reasons underlining this diVerence are yet unclear.

The edges of the LCR blocks of 7q11.23 region are GC
rich (50.1%) and contain an unusually high abundance of
repetitive elements consisting primarily of Alu sequences
(Martindale et al. 2000); the presence of such Alu elements
may be the mechanism predisposing to large segmental
duplications (Antonell et al. 2005).

Inversion of the 7q11.23 region has been found in 27%
of aVected individuals with an atypical WBS phenotype
and in 33% of transmitting parents (Osborne et al. 2001).
The inversion is generated by meiotic or mitotic intrachro-
matid misalignment between the inverted homologous cen-
tromeric and telomeric LCR blocks, resulting in NAHR
between paired LCR blocks. This event can occur at each
of the LCR blocks, thus resulting in variable sized (1.8–
2.9 Mb) paracentric inversions (Bayes et al. 2003). Inver-
sion is considered a benign polymorphism because carriers
are phenotypically normal (Tam et al. 2008). However,
inversion carriers are at risk for generating gametes harbor-
ing the WBS deletion because of an increase likelihood of
chromosome 7 mispairing events in meiosis (Scherer et al.
2005; Tam et al. 2008).

Role of genes within 7q11.23 region: functional studies 
and animal models

Although the commonly deleted region in WBS has been
characterized in detail and a clear role of haploinsuYciency
of ELN on connective tissue and cardiovascular abnormali-
ties has been established (Curran et al. 1993; Ewart et al.
1993), the contributions of the remaining genes in the criti-
cal region to the various features of WBS remain open.

Complementary strategies involving clinical, neuropsycho-
logical, and molecular analyses of patients with both typi-
cal and atypical WBS, mouse models and functional gene
studies have been pursued to delineate the individual and/or
combined contribution of these genes to the spectrum of
WBS abnormalities. These studies focus exclusively on the
single-copy genes, while no information have been so far
reported on the possible role of genes within the LCRs.

The three blocks A, B, and C are mainly composed of
truncated copies of pseudogenes, while the region com-
prised between LCR blocks C-mid and B-mid contains sin-
gle-copy genes.

The block A consists of four diVerent pseudogenes:
STAG3L, PMS2L, GATS-L, WBSCR16, and a genetic frag-
ment of WBSCR19 gene.

STAG3L

Stromalin 3 (STAG3) on 7q22 is the ancestral gene of a
family of truncated homologous genes likely originating
through genomic duplications. This family includes
STAG3-like (STAG3L) 1, 2, and 3 that map to 7q11.23, and
STAG3-like 4 and 5 on chromosomal region 7q22. The
ancestral gene STAG3 encodes for a component of the
axial/lateral element of the synaptonemal complex that is
speciWcally expressed in germinal cells, and has a role in
sister chromatid arm cohesion during mammalian meiosis
(Prieto et al. 2001).

STAG3L genes are transcribed, normally processed, and
result in messengers of distinct sizes which are detected
ubiquitously. The longest ORF of STAG3L1, STAG3L2,
and STAG3L3 cDNAs predicts the generation of identical
134 amino acid proteins, which share 85% similarity to the
middle part of STAG3. It is not known whether any of these
transcripts encode a functional protein (Pezzi et al. 2000).

PMS2L

There are 15 pseudogene loci of PMS2 (PMS2L), some of
them located in the LCR block A of WBS region (Nicola-
ides et al. 1995; Osborne et al. 1997). These pseudogenes
are homologous to PMS2 the gene mutated in mismatch
repair cancer syndrome (OMIM 276300) and hereditary
non-polyposis colon cancer (HNPCC; OMIM 120435).

GATS-L

The medial and telomeric part of block A contains GATS
sequences related to the ancestral GATS gene on chromo-
some 7q22. A part of these sequences shows a high degree
of homology to the 5� end of the pseudogene of GTF2I on
LCR block B. The function of the ancestral GATS gene is
still unclear (Valero et al. 2000).
123



12 Hum Genet (2010) 128:3–26
WBSCR19

Within the block A is present a genetic fragment with high
similarity to WBSCR19 located on chromosome 7p13. The
role of WBSCR19 still remains undeWned.

Finally, a pseudogene of WBSCR16 gene maps within
the telomeric part of block A. The functional copy of
WBSCR16 is localized between the medial part of block
A and telomeric part of block B; it encodes a RCC1-like
G-exchanging factor ubiquitously expressed with a yet
unknown function (Merla et al. 2002).

The block B contains three genes: GTF2I, NCF1, and
GTF2IRD2.

GTF2I

General transcription factor 2-I (GTF2I) and GTF2I repeat
domain containing protein 2 (GTF2IRD2) belong to the
TFII-I gene family encoding transcription factors with
multiple helix-loop-helix (HLH)-like domains, also known as
I-repeats (Bayarsaihan et al. 2002; Hinsley et al. 2004). The
functional copy of GTF2I is localized in the B-mid. The
centromeric and telomeric copies of GTF2I are expressed
as truncated proteins (Perez Jurado et al. 1998; Wang et al.
1998). A third member of this gene family, GTF2IRD1, is
one of the single-copy genes located within WBS region.
Genomic alignments suggest that GTF2IRD2 is a truncated
version of GTF2I, containing its 5� coding region. GTF2I
interacts with GTF2IRD1 (Hinsley et al. 2004) and appears
to be the product of GTF2IRD1 duplication (Makeyev et al.
2004). While GTF2IRD2 is deleted only in WBS patients
with the rarer 1.84-Mb deletions, GTF2IRD1 and GTF2I
are invariably deleted in all cases with canonical deletions
(Bayes et al. 2003).

GTF2I is ubiquitously expressed, with high levels
observed during tooth development (Ohazama and Sharpe
2007); it interacts promiscuously with multiple proteins and
DNA, linking signal transduction to transcription. GTF2I
acts as a multifunctional transcription factor that can bind
enhancer (E-box) and core promoter (Inr) elements in
response to upstream signaling events (Roy et al. 1997).
Therefore, it could potentially aVect a broad range of physi-
ological and developmental pathways. Interestingly, the
expression of GTF2I in WBS patients is dependent on the
parental origin of the transmitted allele, supporting the pres-
ence of an epigenetic control mechanism and the hypothesis
that GTF2I is paternally imprinted (Collette et al. 2009).
Moreover, post-transcriptional silencing of this gene results
in reduced expression of two genes essential for osteoblast
diVerentiation and for Runx2-induced transcription of osteo-
calcin (Lazebnik et al. 2009). In line with these Wndings, het-
erozygous deletion of Gtf2i in mice results in craniofacial
and skeletal defects (Enkhmandakh et al. 2009).

NCF1

The neutrophil cytosolic factor 1 (NCF1) encodes p47phox,
a cytosolic subunit of the NADPH oxidase (NOX) com-
plex, which is mutated in an autosomal recessive form of
chronic granulomatous disease (OMIM 233700) (Gorlach
et al. 1997). Only the gene copy located in the medial block
B is functional, whereas the other two copies, located in the
centromeric and telomeric blocks, respectively, are pseudo-
genes with truncating mutations (Gorlach et al. 1997).
Recent Wndings suggest a role of NCF1 in hypertension of
WBS patients as increased blood pressure occurs with
lower frequency in individuals with deletion including the
functional copy of the gene. Therefore, hemizygosity for
NCF1 may be a protective factor against hypertension pos-
sibly mediated by a reduced angiotensin II-mediated oxida-
tive stress. Increased NCF1 gene-copy number (three
copies), which has been found in a number of WBS
patients, does not result neither in increased prevalence of
hypertension nor in greater activation of the NOX complex,
despite increased p47phox protein expression (Del Campo
et al. 2006).

GTF2IRD2

GTF2IRD2 appears to be fully transcribed by the medial
and the telomeric copies of block B, whereas the B-cen
copy lacking exons 1 and 2 is not expressed (Tipney et al.
2004). The function of GTF2IRD2 is still unknown
although the presence of regions of homology to regulatory
factors, such as leucine zipper and Cys-2/His-2 zinc Wnger
domains, suggests that the encoded protein has DNA and
protein binding properties (Hinsley et al. 2004; Makeyev
et al. 2004). GTF2IRD2 is ubiquitously expressed and
higher levels are observed in fetal tissues (Makeyev et al.
2004; Tipney et al. 2004). GTF2IRD2 which is variably
included in WBS deletions is a candidate to modulate the
eVects of the other GTF2I genes on WBS phenotype (Bayes
et al. 2003). Four genes are present in the LCR block C:
POM121, NSUN5, TRIM50, and FKBP6.

POM121

POM121 is one of the integral membrane components of
the nuclear pore complex (NPC), which mediates the bidi-
rectional transport of macromolecules between nucleus and
cytoplasm. Human cells possess multiple POM121 gene
loci on chromosome 7q11.23, as a consequence of complex
segmental-duplications occurred during human evolution.
Studies in HeLa cells have demonstrated that two full-
length POM121 are transcribed and translated by both cen-
tromeric and telomeric loci. POM121 depletion induces
clustering of NPCs, indicating an important role of this
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protein on maintenance of NPC structure and organization
(Funakoshi et al. 2007).

NSUN5

This gene (alias WBSCR20A) encodes a member of the evo-
lutionarily conserved nucleolar protein 1 (NOL1)/NOP2/
SUN domain family. NSUN5 may function as a DNA
methyltransferase in the nucleus (Doll and Grzeschik 2001;
Merla et al. 2002). The ancestral gene of NSUN5 is located
in the medial part of block C; other two copies NSUN5C
and NSUN5B Xanking the WBS deletion at the centromeric
and telomeric sides are transcribed as truncated copies with
a shorter open reading frame (ORF). All three NSUN5
genes are ubiquitously expressed although the truncated
copies have tissue-speciWc patterns (Antonell et al. 2005).

TRIM50

Recently, three tripartite motif-containing protein 50
(TRIM50)-like copies were identiWed in the human genome,
TRIM74 (TRIM50C), TRIM50 (also known as TRIM50A),
and TRIM73 (TRIM50B). All three copies are expressed as
demonstrated by the identiWcation of spliced ESTs speciWc
to each transcript. TRIM50 maps between NSUN5 and
FKBP6 within repeated block C-mid, TRIM74 maps to the
block C-cen interval, between NSUN5C and FKBP6T1, and
TRIM73 between FKBPT2 and NSUN5B in block C-tel
(Fig. 1). Therefore, WBS patients are hemizygotes for
TRIM50 but not for TRIM73 and TRIM74 (Merla et al.
2002). TRIM50 belongs to the TRIM family which harbors,
from their N- to their C-terminal, a Ring (R), a B-box type
2 (B2), a Coiled-Coil (CC), and an RFP-like/B30.2 domain.
TRIM73 and TRIM74 encode almost identical putative pro-
teins containing only the R, B2, and CC domains. As many
other members of this family, TRIM50 encodes for an E3-
ubiquitin-ligase with a role in the ubiquitin-mediated pro-
teasome degradation pathway (Micale et al. 2008).

FKBP6

The functional copy of the FK506-binding protein 6
(FKBP6) is located in the medial part of block C, whereas
the centromeric and telomeric pseudogene copies of
FKBP6 are truncated copies harboring the Wrst four exons
of the ancestral gene (Meng et al. 1998). FKBP6 belongs to
the immunophilins FKBP family and contains a three-unit
tetratricopeptide repeat motif and a peptidyl-prolyl cis–
trans isomerase activity (Meng et al. 1998). This protein is
a component of the synaptonemal complex, an elaborate
meiosis-speciWc supramolecular protein structure involved
in pairing and recombination of homologous chromosomes
during meiosis (Heyting 1996). Loss of Fkbp6 results in

abnormal pairing and misalignment of homologous chro-
mosomes, non-homologous partner switches, and autosy-
napsis of the X chromosome cores in meiotic
spermatocytes. In addition, loss of Fkbp6 results in asper-
mia and absence of normal pachytene spermatocytes in
male mice but normal fertility and no apparent abnormali-
ties in females (Crackower et al. 2003). Interestingly, one
of the 7q11.23 duplication patients with congenital heart
defect carried a small 0.3–0.4 Mb microduplication encom-
passing only FKBP6 (Kriek et al. 2006).

The single-copy gene inside the critical region

At the present, 22 single-copy genes have been mapped
between the LCR blocks C-mid and B-mid (Fig. 1).

FZD9

Frizzled drosophila homolog of 9 (FZD9) encodes for a
transmembrane receptor of Wnt signaling proteins. The
binding of Fzd receptors results in inhibition of �-catenin
pathway involved in development, lymphoid maturation,
tumorigenesis, and maintenance of stem cell populations in
various tissues (Huelsken et al. 2000, 2001; Korinek et al.
1998). FZD9 is selectively expressed in the hippocampus
throughout life (Zhao and Pleasure 2004, 2005), and Fzd9
null mutants have defects in learning and memory reXect-
ing hippocampal functional deWcits (Zhao and Pleasure
2005). Moreover, Fzd9 null and heterozygous mice have
increased apoptotic cell deaths and increased precursor pro-
liferation during hippocampal development. These evi-
dences suggested that Fzd9 has an important role in
hippocampal development, and therefore, may be a candi-
date for the neurodevelopmental and behavioral phenotype
of WBS individuals. However, in another study, no WBS
development and morphologic features abnormalities were
observed in Fzd9 knockout mice (Ranheim et al. 2005).
Homozygous mice lacking Fzd9 showed immune and
hematologic abnormalities including splenomegaly, thymic
atrophy, lymphoadenopathy, and abnormalities of B cells in
the bone marrow (Ranheim et al. 2005). Hence, more stud-
ies are needed to ascertain the precise contribution of FZD9
to neurodevelopmental and behavioral features.

BAZ1B

Bromodomain adjacent to zinc Wnger domain 1B (BAZ1B),
also known as Williams syndrome transcription factor
(WSTF), is one of the components of the multifunctional
ATP-dependent chromatin-remodeling complex named
‘WSTF including nucleosome assembly complex’
(WINAC) and involved in multiple functions such as DNA
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transcription, DNA replication, and DNA repair (Kitagawa
et al. 2003). Core components of the WINAC are essential
for embryonic development, whereas coregulatory subunits
appear to support the spatiotemporal function of the com-
plexes (Bultman et al. 2000; de la Serna et al. 2006). These
evidences may suggest that certain features of WBS could
be the resultant of chromatin-remodeling dysfunction due
to BAZ1B haploinsuYciency (Kitagawa et al. 2003).

Experimental data suggest that BAZ1B regulates the
expression of enzymes involved in both synthesis and
catabolism of vitamin D (Kitagawa et al. 2003). Therefore,
BAZ1B haploinsuYciency has been hypothesized to be
responsible for the hypercalcemia of WBS. Nevertheless, to
date, no gene has been proven to be involved in the hyper-
calcemia. Interestingly, the calcitonin receptor (CALCR)
gene, which was originally hypothesized to be important in
the pathogenesis of WBS-associated hypercalcemia, is just
outside the WBS deletion interval (Perez Jurado et al.
1995). Given the recently recognized role of positional
eVect on the expression of genes outside the critical region,
the contribution of this gene to the hypercalcemia could be
reconsidered (Henrichsen et al. 2009a, b; Merla et al.
2006).

BAZ1B is important in the developing heart, and is
required for normal function of cardiac transcriptional
regulators. Consistent with this role, all BAZ1B¡/¡ and
10% of BAZ1B+/¡ mice exhibit cardiovascular defects,
such as multiple atrial and muscular ventricular septal
abnormalities, hypertrophy of both ventricles, and double-
outlet right ventricles (Yoshimura et al. 2009). However,
these congenital heart malformations are rarely observed in
WBS patients.

BCL7B

B-cell CLL/lymphoma 7B (BCL7B) belongs to a family of
highly conserved genes expressed in early embryonic
development. BCL7A, another member of the family, is a
putative tumor suppressor gene with a role in the pathogen-
esis of non-Hodgkin lymphoma (Zani et al. 1996). Hemizy-
gous loss of 7q11.23, including BCL7B and its reduced
expression, has been found in pilocytic astrocytomas (Pot-
ter et al. 2008). Despite these data, there is no evidence to
suggest an increased tumor risk in WBS (Pober and Morris
2007) although a formal estimate of the cancer incidence in
WBS has not yet been calculated.

TBL2

The transducing-�-like 2 (TBL2) gene encodes a member of
the �-transducin protein family with four putative WD40-
repeats. Expression studies showed a ubiquitous lower level
expression of TBL2 mainly in testis, skeletal muscle, and

heart (Perez Jurado et al. 1999). The role of TBL2 in the
pathophysiology of WBS has not been resolved so far.

MLXIPL

The Max-like protein (MLX)-interacting protein-like
(MLXIPL) gene (also known as WBSCR14 or CHREBP)
encodes a member of the basic-helix-loop-helix leucine
(bHLH) family of transcription factors (Cairo et al. 2001).
It dimerizes with MLX to bind and activate, in a glucose-
dependent manner, carbohydrate responsive element
motifs in the promoter of several genes involved in hepatic
glycolysis, lipogenesis, and gluconeogenesis (Iizuka and
Horikawa 2008; Uyeda et al. 2002). When glucose avail-
ability is low, WBSCR14 is maintained in an inactive,
phosphorylated status in the cytosol (Kawaguchi et al.
2001; Merla et al. 2004; Uyeda et al. 2002; Yamashita
et al. 2001). Conversely, high glucose level results in
WBSCR14 dephosphorylation, nuclear translocation,
and transcriptional activation (Kabashima et al. 2003).
Wbscr14¡/¡ mice are viable with a normal lifespan, but
they show decreased serum triglyceride and increased
hepatic glycogen content compared to wild-type mice
(Iizuka et al. 2004). Therefore, WBSCR14 haploinsuY-
ciency may be involved in the impaired glucose tolerance
and diabetes mellitus of WBS individuals (Cherniske et al.
2004).

VPS37D

Vacuolar protein sorting 37 (VPS37D; alias WBSCR24) is
homologous to proteins of the conserved endosomal sorting
complex for transport, which performs three distinct but
related functions: (1) recognition of ubiquitinated cargoes
and prevention of their recycling and retrograde traYcking;
(2) deformation of the endosomal membrane, allowing
cargo to be sorted into endosomal invaginations; (3) cataly-
zation of Wnal abscission of the endosomal invaginations
(Raiborg and Stenmark 2009).

DNAJC30

The intronless DNAJC30 (alias WBSCR18) gene encodes
for a member of the DNAJ/HSP40 molecular chaperones,
which regulate chaperone activity by stimulating ATPase
activity. WBSCR18 is expressed in multiple tissues, but its
function remains unknown (Merla et al. 2002).

WBSCR22

This gene encodes a putative protein containing a nuclear
localization signal and an S-adenosyl-L-methionine binding
motif typical of methyltransferases. It is strongly expressed
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in heart, skeletal muscle, kidney, and testis (Doll and
Grzeschik 2001; Merla et al. 2002).

STX1A

Syntaxin 1A (STX1A) encodes for a plasma membrane pro-
tein abundantly expressed in neurons. It forms a complex
with the 25-kDa synaptosomal-associated protein (SNAP-
25) and vesicle-associated membrane protein 2 (VAMP-2;
also known as synaptobrevin), two proteins involved in
synaptic vesicle exocytosis. Stx1a+/¡ mice are viable with
no apparent phenotype, but they exhibit impaired long-term
potentiation (LTP) in the hippocampal slice and impaired
memory consolidation and extinction in the conditioned
fear memory test. Because these functions rely on synaptic
plasticity and given its role in synaptic exocitosis, STX1A
could play a role in the neurocognitive phenotype of WBS
(Fujiwara et al. 2006). Most of the Stx1a¡/¡ mice die in
utero (McRory et al. 2008). However, few homozygous
animals were born alive and exhibited reduced body size
(McRory et al. 2008).

Transgenic mice expressing increased levels of Stx1a
and Stx1a+/¡ mice display a reduced insulin secretion and
impaired glucose tolerance, possibly mediated by altered
function of pancreatic �-cell ion channels and of the exocy-
tic machinery. Therefore, alteration of STX1A gene dosage
might also contribute to impaired glucose metabolism and
diabetes of WBS patients (Lam et al. 2005).

WBSCR26

The function of this gene is unknown. It is highly expressed
in testis, skin, kidney, liver, and small intestine (Doll and
Grzeschik 2001; Merla et al. 2002).

ABHD11

The abhydrolase domain containing 11 (ABHD11; alias
WBSCR21) gene encodes a ubiquitously expressed protein
harboring an �/� hydrolase domain. Five alternatively
spliced forms have been identiWed in human. WBSCR21
form B, form C, and form E encode truncated WBSCR21
proteins without the hydrolase domain (Merla et al. 2002).
ABHD11 function is unknown.

CLDN3 and CLDN4

Claudin proteins are important in the formation of tight
junctions of epithelial and endothelial cells, and their
expression is altered in various cancers such as ovarian,
breast, prostate, and pancreatic tumors (Morin 2005).
Higher expression of CLDN3 and CLDN4 are associated
with increased cellular motility and survival of ovarian

tumor cells. CLDN3 gene silencing suppresses ovarian
tumor growth and metastasis (Huang et al. 2009). Interest-
ingly, the occurrence of ovarian cancer in WBS has been
reported in one review article (Pober and Morris 2007).

WBSCR27 and WBSCR28

Little is known about the proteins encoded by these genes.
WBSCR27 protein belongs to the ubiE/COQ5 methyltrans-
ferase family with unknown function. Androgen receptor-
mediated WBSCR28 repression may be involved in prostate
cancer (Prescott et al. 2007).

ELN

ELN haploinsuYciency is unequivocally responsible for
SVAS and other connective tissue abnormalities of WBS
patients (Ewart et al. 1993). The elastin forms the elastic
Wbers of the extracellular matrix of connective tissue
throughout the body. Elastin haploinsuYciency in WBS
results in an arteriopathy involving medium- and large-
sized arteries leading to lumen narrowing. Hypertension is
observed commonly in WBS patients with and without
renal artery stenosis (Broder et al. 1999; Giordano et al.
2001), and its etiology is still a matter of debate. Reduction
of vascular elasticity, due to elastin haploinsuYciency, may
increase the hemodynamic stress to the endothelium, lead-
ing to intimal proliferation of smooth muscle and Wbro-
blasts, Wbrosis, and luminal narrowing of the vessels
(Karnik et al. 2003). However, the pathogenesis of the arte-
riopathy in WBS may be more complex, and is possibly
related to other genes in the WBS critical region such as
NCF1 (Del Campo et al. 2006).

Eln¡/¡ mice die in the perinatal period with exuberant
vascular smooth muscle cell overgrowth. Eln+/¡ mice,
instead synthesizing »50% of normal elastin protein, sur-
vive beyond the neonatal period. These mice exhibit cardio-
vascular features resembling those found in patients with
WBS although there are some notable diVerences, such as
the absence of focal areas of stenosis (Li et al. 1998).

Interestingly, in contrast to other studies (Urban et al.
2000, 2002), relative expression levels of ELN gene in skin
Wbroblasts from WBS patients was found to be highly vari-
able with values overlapping to those of non-aVected
(Merla et al. 2006). This discrepancy might be due to the
diVerent number of samples examined and/or to the diVer-
ent sensitivity of the used methods.

Therefore, it is possible that the gene expression changes
are not always directly correlated to copy number, suggest-
ing that other factors, such as size of the deletion, changes
in chromatin, dosage compensation mechanisms, or a com-
bination of these factors, may inXuence the transcription
levels. It is also possible that incomplete penetrance of
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SVAS correlates with ELN mRNA levels and patients acti-
vating compensatory mechanism(s) of expression are less
likely to develop the obstruction (Merla et al. 2006). In
addition, it remains to be investigated whether ELN expres-
sion in Wbroblasts recapitulates the expression of aVected
cells (i.e. smooth muscle or connective tissue cells).

LIMK1

LIM kinase 1 (LIMK1) is a serine protein kinase involved
in organization of the actin cytoskeleton by phosphoryla-
tion and inactivation of coWlin, a protein which depolymer-
izes actin (Proschel et al. 1995). LIMK1 is prominently
expressed in the central nervous system and accumulates at
the level of mature synapses, suggesting that it may be
involved in synapse formation and/or maintenance (Scott
and Olson 2007). Actin remodeling has been suggested to
be crucial for the establishment and modiWcation of den-
dritic spines that make up the majority of the synaptic con-
nections within the hippocampus and are associated with
the formation and maintenance of memory and learning
(Nimchinsky et al. 2002). Limk1¡/¡ mice exhibit signiW-
cant abnormalities in dendritic spine morphology and
development and in synaptic structures. Consistent with
these alterations, the mice show behavioral abnormalities,
including impaired fear conditioning and spatial learning
(Frangiskakis et al. 1996; Meng et al. 2002), reminiscent of
impaired visuospatial constructive cognition seen in WBS
patients. However, hemizygous deletion of LIMK1 does not
appear to be suYcient to account for the spatial deWcits
associated with WBS (Smith et al. 2009).

EIF4H

Eukaryotic initiation factor 4H (EIF4H) gene is ubiqui-
tously expressed, and is involved in translation initiation
and RNA duplex unwinding (Richter et al. 1999). Interest-
ingly, the hsa-miR-590, the only known miRNA within the
WBS-deleted region, maps within the intron 4–5 of the
EIF4H gene (Merla et al., unpublished results).

LAT2

Linker for activation of T cells 2 (LAT2) encodes for a Na+-
independent neutral amino acid transporter. Functional
studies have indicated that LAT2 plays a role in mast cell
activation, but this function requires further clariWcation
(Iwaki et al. 2007).

RFC2

RFC2 is a subunit of the replication factor C (RFC) that plays
a key role in chromosome replication in eukaryotic cells

(Peoples et al. 1996). The elongation of primed DNA tem-
plates by DNA polymerase � and � requires the action of the
accessory proteins, proliferating cell nuclear antigen (PCNA)
and RFC complex. Unbound to DNA, PCNA promotes
localization of replication factors with a consensus PCNA-
binding domain to replication factories. When bound to
DNA, PCNA organizes various proteins involved in DNA
replication, DNA repair, DNA modiWcation, and chromatin
remodeling (Majka and Burgers 2004). RFC2 is ubiquiti-
nated by the RAD6–RAD18 complex in vitro, and its modiW-
cation is inhibited in the presence of the replication protein A
in response to a DNA damage (Tomida et al. 2008). Interest-
ingly, WBS patient-derived cell lines were found to exhibit a
defective ATR-pathway activity similar to other syndromes
with defective DNA damage response (O’Driscoll et al.
2007). Cardinal clinical features of this group of disorders
include microcephaly and growth failure, which are also
common in WBS. Hence, defective ATR-pathway in WBS
could be responsible for microcephaly and growth retarda-
tion which are typically seen in DNA damage response and
repair deWciency syndromes, such as for example ataxia–
telengectasia (OMIM 208900) and Seckel syndrome (OMIM
210600) (Kerzendorfer and O’Driscoll 2009).

CLIP2

CAP-Gly domain-containing linker protein 2 (CLIP2)
belongs to a family of cytoplasmic linker proteins mediat-
ing interactions between organelles and microtubules.
CLIP2 is abundantly expressed in neurons of the hippocam-
pus, piriform cortex, olfactory bulb, and inferior olive
(Hoogenraad et al. 2002), and has been implicated in regu-
lation of microtubule dynamics (De Zeeuw et al. 1997).
Clip2 knockout mice have features reminiscent of WBS,
including growth deWciency, altered hippocampal synaptic
functioning, and speciWc deWcits aVecting motor coordina-
tion but not locomotor activity. CLIP2 haploinsuYciency
might contribute to the cerebellar and hippocampal dys-
functions involved in the motor and cognitive features of
WBS patients (Hoogenraad et al. 2002). Absence of CLIP2
also leads to increased levels of CLIP-170 (a closely related
cytoplasmic linker protein) and dynactin at the tips of
growing microtubules. Patients with partial deletions of the
WBS region not including the CLIP2 gene exhibit mild–
absent visuospatial impairment and relatively spared Wne
motor and gross motor skills. These Wndings suggest a role
for CLIP2 in motor and cognitive phenotypes (Dai et al.
2009; Ferrero et al. 2010).

GTF2IRD1

GTF2IRD1 binds regulatory elements of genes involved
in development and diVerentiation. A combination of
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comparative sequence analyses and binding assays has
deWned a highly conserved DNA element, deWned as
GTF2IRD1 upstream control element (GUCE) which is
present in the three genes HOXC8, Goosecoid, and Tropo-
nin I slow, all regulated by GTF2IRD1 in vivo (Thompson
et al. 2007). Similar to other members of the TFII-I gene
family, GTF2IRD1 is highly expressed during odontogene-
sis, and therefore, may be involved in WBS tooth abnor-
malities (Ohazama and Sharpe 2007). During development
Gtf2ird1 is predominantly expressed in musculoskeletal
and craniofacial tissues, whereas in adult mice it is
expressed in neurons of the central and peripheral nervous
system, spiral ganglion of the cochlea, smooth muscle, ret-
ina, and olfactory epithelium. A mouse model harboring a
deletion between Clip2 and Gtf2ird1 showed craniofacial
abnormalities involving a misaligned jaw, a twisted snout,
and dental abnormalities (Tassabehji et al. 2005). Gtf2ird1
knockout mice, instead, do not exhibit craniofacial or den-
tal abnormalities (Palmer et al. 2007). Finally, mice haplo-
insuYcient for both Gtf2ird1 and Gtf2i are often growth
retarded, and show hypoplasia of the mandible, as well as
other craniofacial defects resembling the defects and dental
problems of WBS individuals (Enkhmandakh et al. 2009).

Several studies showed that GTF2IRD1 transcript levels
in WBS patients are not signiWcantly diVerent from con-
trols, whereas transcription levels from the Xanking genes
CLIP2 and GTF2I are as expected »50% of health control
levels (Antonell et al. 2010; Collette et al. 2009; Merla
et al. 2006; Palmer et al. 2009). The unexpected result of
GTF2IRD1 was recently explained by the demonstration
of a negative auto-regulatory mechanism controlling the
level of GTF2IRD1 transcription via direct binding of the
GTF2IRD1 protein to a highly conserved region on its pro-
moter. Protein–DNA interaction is critically dependent
upon multiple interactions between separate domains of the
protein and at least two of the three DNA binding sites of
the GTF2IRD1 promoter. This auto-regulatory mechanism

results into dosage compensation of GTF2IRD1 transcrip-
tion in WBS patients (Palmer et al. 2009).

Analyses of the phenotypes of patients with partial dele-
tions of WBS region suggest that GTF2I and GTF2IRD1
have overlapping functions and may contribute to at least
some of the craniofacial features, global intellectual deWcit,
and the cognitive-behavioral proWle, such as visuospatial
skills, cognition, and hypersociability (Edelmann et al.
2007; Howald et al. 2006; Morris et al. 2003).

WBSCR23

WBSCR23 is intronless, and its mRNA is transcribed on the
same strand of GTF2IRD1 gene. The function of this tran-
script is unknown, and the putative protein has no signiW-
cant similarity to any so far characterized protein (Merla
et al. 2002).

Mouse models for the WBS genomic deletions

Dissection of the molecular mechanisms underlying the
unique features of WBS have been improved with the
recent generation of a knockout mouse model for the WBS
region generated by Uta Francke’s group (Li et al. 2009).
Using chromosome-engineering techniques, they generated
three strains of mice with complementary half-deletions of
the conserved WBS syntenic region on mouse chromosome
5G2: proximal deletion (Prox-del) mice lack Gtf2i to
Limk1, distal deletion (Dist-del) mice lack Limk1 to Fkbp6,
and the double heterozygote (Dist-del/Prox-del) mice carry
the complete human deletion (Fig. 3).

Dist-del and Dist-del/Prox-del mice showed craniofacial
abnormalities similar to those observed in WBS individu-
als, such as the reduction of the posterior width of the skulls
and reduced brain volumes, and indicate that genes within
the Dist-del are the main contributors to the craniofacial

Fig. 3 Genomic organization of 
WBS syntenic region in mouse 
chromosome 5G2. Schematic 
representation of proximal dele-
tion mice lacking Gtf2i to Limk1, 
distal deletion mice lacking 
Limk1 to Fkbp6, and double het-
erozygotes model lacking the 
full human deletion, as reported 
in (Li et al. 2009). The two par-
tial deletions are depicted as 
black lines and the double het-
erozygote as a red line. Cen cen-
tromere; Tel telomere
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abnormalities seen in WBS individuals. Typical WBS
connective tissue abnormality such as hernia was observed
in Dist-del and Dist-del/Prox-del mice, while females
developed rectal or vaginal prolapse.

Motor coordination and motor skill assessment showed
that Dist-del/Prox-del mice had the greatest impairment in
motor skills and coordination compared to the other geno-
types, thus showing that both genes in the proximal and dis-
tal region contribute to sensory and motor dysfunction (Li
et al. 2009). Interestingly, Prox-del mice showed a set of
abnormal social interactions, including increased sociabil-
ity and acoustic startle response, while Dist-del mice
showed cognitive defects (Li et al. 2009), providing evi-
dence that some dosage-sensitive genes in the Prox-del
region are responsible for WBS behavioral phenotype.

This study has tremendously improved our understand-
ing of how WBS features generate; it provides insights
about the contribution of individual genes or sets of genes
for WBS phenotypes and then represents a useful model for
any future studies on WBS.

Lessons from atypical patients

The study of aVected individuals with atypical (smaller or
larger) deletions and duplications allows inference on geno-
type–phenotype correlations. Clinical versus molecular
analyses provide a unique opportunity to investigate the
individual contribution of genes within the 7q11.23 interval
to the clinical phenotypes. A certain number of WBS indi-
viduals with atypical deletions (Antonell et al. 2010; Botta
et al. 1999; Dai et al. 2009; Edelmann et al. 2007; Ferrero
et al. 2010; Gagliardi et al. 2003a; Hirota et al. 2003, 2006;
KarmiloV-Smith et al. 2003; Korenberg et al. 2000; Morris
et al. 2003; Schubert and Laccone 2006; Tassabehji et al.
1999) and one with a duplication involving only the FKBP6
gene have been reported (Kriek et al. 2006).

Based on two families presenting with cardiovascular
manifestations and partial features of the WBS cognitive
proWle associated with atypical deletions encompassing
only ELN and LIMK1, it was suggested that LIMK1 hemi-
zygosity contributes to impairment of visuospatial con-
struction (Frangiskakis et al. 1996). However, this claim
turned out to be inconsistent with the Wnding of three indi-
viduals with similar deletions including LIMK1 who also
showed SVAS but not the WBS cognitive abnormalities
(Tassabehji et al. 1999).

There have been reports of several WBS individuals
with deletions extending from the centromeric LCR to the
CYLN2 or GTF2IRD1 presenting with SVAS, milder facial
features, and unusual cognitive proWle with preserved
visuospatial skills (see Fig. 1). The clinical and molecular
evaluations imply that the genes aVected by those deletions

have contributed modestly to the WBS phenotype and even
less to neurocognition (Ferrero et al. 2010; Gagliardi et al.
2003b; Howald et al. 2006; Tassabehji et al. 2005; van
Hagen et al. 2007). Consistently, recent studies reinforce
the concept that LIMK1 deletion alone would not be suY-
cient to cause the impairment of visuospatial and construc-
tion abilities as initially proposed (Tassabehji et al. 1999).
GTF2IRD1 hemizygosity alone is not suYcient to cause the
visuospatial construction deWcit, but may contribute to the
hypersociable personality (Antonell et al. 2010). Combined
clinical and molecular results suggest that hemizygosity of
the GTF2I family of transcription factors is suYcient to
produce multiple aspects of the WBS cognitive and
behavioral proWles, including impaired visuospatial con-
struction abilities, an over friendly personality accompanied
by excessive non-social anxiety and language delay (Dai
et al. 2009; Edelmann et al. 2007). In summary, although
further studies are clearly needed, the analyses of atypical
deletion patients points to LIMK1, CYLN2, and GTF2I as
the most likely candidates for the neurodevelopmental
phenotype of WBS.

The number of atypical deletions in patients is still
small, and detailed deletion size mapping at nucleotide
level and expression data of deleted and Xanking genes per-
formed by MLPA, qPCR, or aCGH on a larger number of
patients will help to shed light on the pathogenic role of
genes within the deleted region.

Conclusions and future directions

The WBS and its reciprocal 7q11.23 duplication syndrome
share few phenotypic similarities such as joint laxity, infan-
tile hypotonia, developmental delay/mental retardation, and
ADHD (Table 1). However, they are strikingly diVerent
with respect to their cognitive and behavioral proWles. The
expressive language delay with sparing of visuospatial cog-
nition in patients with duplication of the WBS region is in
direct contrast to the well-characterized cognitive proWle
seen in typical WBS patients, while the relative behavioral
withdrawal is the converse of the typically outgoing person-
ality proWle observed in patients with WBS. The molecular
and neuroanatomical substrates of these features are of
great interest, and it is possible that genes both within and/
or immediately outside the critical region are expressed in
brain structures important for language, visuospatial cogni-
tion, anxiety, and social behavior in such a way that
changes in gene dosage have diVerent classes of eVects. For
such dosage-sensitive genes, alleles with varying degrees of
activity on the normal chromosome (in the case of deletion)
or on either chromosome (in the case of duplication) could
modify the eVect of the genomic rearrangement, thus
explaining the variability on expressivity observed in both
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conditions. One class of dosage-sensitive genes could aVect
pathways in reciprocal fashion, resulting in converse phe-
notypes in deletion and duplication patients. A diVerent
class of dosage-sensitive genes could disrupt the same path-
way, resulting in features shared between the two syn-
dromes, such as anxiety and ADHD.

The majority of the studies aiming at elucidation of
genotype/phenotype correlation in WBS have been focused
on the role of genes inside the deleted/duplicated interval.
However, multiple other factors such as regulatory
sequences, parental origin of the CNV, and variations in the
non-deleted/duplicated allele may be also involved.

Of interest is also the potential importance of the genes
and expressed pseudogenes within LCRs. Do the non-
deleted genes/pseudogenes in the LCRs contribute to the
7q11.23 CNV phenotypes? For instance, we showed that
WBS patients are hemizygous for TRIM50, but not for the
paralogous TRIM73 and TRIM74 located within the blocks
C (Micale et al. 2008). Both paralogous genes lack the
C-terminal region responsible for proper protein localiza-
tion, therefore we can speculate that their roles may be
somewhat diVerent from the one of TRIM50; hence, the
LCR-located genes may exert own contribution for WBS
phenotype. Unfortunately, to date, no studies have
addressed this question.

All these factors, which have been largely neglected until
recently, likely play an important role in determining the var-
iable expressivity of WBS phenotype (Collette et al. 2009;
Merla et al. 2006). Likely, comprehensive genome-wide and
transcriptome analyses of WBS-aVected individuals and of
the recently developed mouse model will provide a testable
list of candidate pathways dysregulated in WBS and possibly
involved in the wide range of associated clinical Wndings.
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